Isotopic evidence for large gaseous nitrogen losses from tropical rainforests.
نویسندگان
چکیده
The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have measured the 15N/14N of inputs and hydrologic losses. We report that the two most widely purported mechanisms, an isotopic shift in N inputs or isotopic discrimination by leaching, fail to explain this climate-dependent trend in 15N/14N. Rather, isotopic discrimination by microbial denitrification appears to be the major determinant of N isotopic variations across differences in rainfall. In the driest climates, the 15N/14N of total dissolved outputs is higher than that of inputs, which can only be explained by a 14N-rich gas loss. In contrast, in the wettest climates, denitrification completely consumes nitrate in local soil environments, thus preventing the expression of its isotope effect at the ecosystem scale. Under these conditions, the 15N/14N of bulk soils and stream outputs decrease to converge on the low 15N/14N of N inputs. N isotope budgets that account for such local isotopic underexpression suggest that denitrification is responsible for a large fraction (24-53%) of total ecosystem N loss across the sampled range in rainfall.
منابع مشابه
Isotopic signals of summer denitrification in a northern hardwood forested catchment.
Despite decades of measurements, the nitrogen balance of temperate forest catchments remains poorly understood. Atmospheric nitrogen deposition often greatly exceeds streamwater nitrogen losses; the fate of the remaining nitrogen is highly uncertain. Gaseous losses of nitrogen to denitrification are especially poorly documented and are often ignored. Here, we provide isotopic evidence (δ(15)NNO...
متن کاملCarbon and nitrogen metabolism in mycorrhizal networks and mycoheterotrophic plants of tropical forests: a stable isotope analysis.
Most achlorophyllous mycoheterotrophic (MH) plants obtain carbon (C) from mycorrhizal networks and indirectly exploit nearby autotrophic plants. We compared overlooked tropical rainforest MH plants associating with arbuscular mycorrhizal fungi (AMF) to well-reported temperate MH plants associating with ectomycorrhizal basidiomycetes. We investigated (13)C and (15)N abundances of MH plants, gree...
متن کاملEcosystem Consequences of Tree Monodominance for Nitrogen Cycling in Lowland Tropical Forest
Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of ...
متن کاملEvidence from the real world: N natural abundances reveal enhanced nitrogen use at high plant diversity in Central European grasslands
1. Complementarity that leads to more efficient resource use is presumed to be a key mechanism explaining positive biodiversity–productivity relationships but has been described solely for experimental set-ups with controlled environmental settings or for very short gradients of abiotic conditions, land-use intensity and biodiversity. Therefore, we analysed plant diversity effects on nitrogen d...
متن کاملCaution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry.
An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN(2)) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 23 شماره
صفحات -
تاریخ انتشار 2006